Oxidative stress and AP-1 activity in tamoxifen-resistant breast tumors in vivo.
نویسندگان
چکیده
BACKGROUND Most breast cancers, even those that are initially responsive to tamoxifen, ultimately become resistant. The molecular basis for this resistance, which in some patients is thought to involve stimulation of tumor growth by tamoxifen, is unclear. Tamoxifen induces cellular oxidative stress, and because changes in cell redox state can activate signaling pathways leading to the activation of activating protein-1 (AP-1), we investigated whether tamoxifen-resistant growth in vivo is associated with oxidative stress and/or activation of AP-1 in a xenograft model system where resistance is caused by tamoxifen-stimulated growth. METHODS Control estrogen-treated, tamoxifen-sensitive, and tamoxifen-resistant MCF-7 xenograft tumors were assessed for oxidative stress by measuring levels of antioxidant enzyme (e.g., superoxide dismutase [SOD], glutathione S-transferase [GST], and hexose monophosphate shunt [HMS]) activity, glutathione, and lipid peroxidation. AP-1 protein levels, phosphorylated c-jun levels, and phosphorylated Jun NH(2)-terminal kinase (JNK) levels were examined by western blot analyses, and AP-1 DNA-binding and transcriptional activities were assessed by electrophoretic mobility shift assays and a reporter gene system. All statistical tests are two-sided. RESULTS Compared with control estrogen-treated tumors, tamoxifen resistant tumors had statistically significantly increased SOD (more than threefold; P=.004) and GST (twofold; P=.004) activity and statistically significantly reduced glutathione levels (greater than twofold; P<.001) and HMS activity (10-fold; P<.001). Lipid peroxides were not significantly different between control and tamoxifen-resistant tumors. We observed no differences in AP-1 protein components or DNA-binding activity. However, AP-1-dependent transcription (P=.04) and phosphorylated c-Jun and JNK levels (P<.001) were statistically significantly increased in the tamoxifen-resistant tumors. CONCLUSION Our results suggest that the conversion of breast tumors to a tamoxifen-resistant phenotype is associated with oxidative stress and the subsequent antioxidant response and with increased phosphorylated JNK and c-Jun levels and AP-1 activity, which together could contribute to tumor growth.
منابع مشابه
Increased activator protein-1 DNA binding and c-Jun NH2-terminal kinase activity in human breast tumors with acquired tamoxifen resistance.
Human breast tumors that are initially responsive to tamoxifen (TAM) eventually relapse during treatment. Estrogen receptor (ER) expression and function are often preserved in these tumors, and clinical evidence suggests that this relapse may be related to TAM's known agonistic properties. ER can interact with the activator protein-1 (AP-1) transcription factor complex through protein-protein i...
متن کاملBlockade of AP-1 Potentiates Endocrine Therapy and Overcomes Resistance.
UNLABELLED The transcription factor AP-1 is downstream of growth factor (GF) receptors (GFRs) and stress-related kinases, both of which are implicated in breast cancer endocrine resistance. Previously, we have suggested that acquired endocrine resistance is associated with increased activity of AP-1 in an in vivo model. In this report, we provide direct evidence for the role of AP-1 in endocrin...
متن کاملAntiproliferative effects of flavonoid fractions from Calendula officinalis flowers in parent and tamoxifen resistant T47D human breast cancer cells
The risk of human breast cancer is concerned to cumulative exposure of the breast cells to endogenous estrogens. Strategies aiming at reducing the production of estrogens may be useful for the prevention of estrogens-related breast cancer. Several natural products with plant origin have the potential value as chemo-preventive or therapeutic agents in cancer. Flavonoids, the natural polyphenol c...
متن کاملAntiproliferative effects of flavonoid fractions from Calendula officinalis flowers in parent and tamoxifen resistant T47D human breast cancer cells
The risk of human breast cancer is concerned to cumulative exposure of the breast cells to endogenous estrogens. Strategies aiming at reducing the production of estrogens may be useful for the prevention of estrogens-related breast cancer. Several natural products with plant origin have the potential value as chemo-preventive or therapeutic agents in cancer. Flavonoids, the natural polyphenol c...
متن کاملOxidative stress contributes to the tamoxifen-induced killing of breast cancer cells: implications for tamoxifen therapy and resistance
Tamoxifen is the accepted therapy for patients with estrogen receptor-α (ERα)-positive breast cancer. However, clinical resistance to tamoxifen, as demonstrated by recurrence or progression on therapy, is frequent and precedes death from metastases. To improve breast cancer treatment it is vital to understand the mechanisms that result in tamoxifen resistance. This study shows that concentratio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the National Cancer Institute
دوره 92 23 شماره
صفحات -
تاریخ انتشار 2000